Enterprise Database & Data Engineering Solutions
Transform your organization with scalable, high-performance data platforms that deliver actionable insights and drive innovation.
-- Fact table for sales analytics
CREATE TABLE fact_sales (
sale_id BIGINT IDENTITY(1,1) PRIMARY KEY,
date_id DATE NOT NULL REFERENCES dim_date(date_id),
product_id INTEGER NOT NULL REFERENCES dim_product(product_id),
customer_id INTEGER NOT NULL REFERENCES dim_customer(customer_id),
quantity INTEGER NOT NULL,
unit_price DECIMAL(10,2) NOT NULL,
discount_pct DECIMAL(5,2) NOT NULL,
sales_amount DECIMAL(12,2) NOT NULL,
profit_amount DECIMAL(12,2) NOT NULL
)
DISTKEY(customer_id)
SORTKEY(date_id);
-- Create materialized view for reporting
CREATE MATERIALIZED VIEW mv_monthly_sales AS
SELECT
d.year,
d.month,
p.category,
SUM(f.sales_amount) AS total_sales
FROM
fact_sales f
JOIN dim_date d ON f.date_id = d.date_id
JOIN dim_product p ON f.product_id = p.product_id
GROUP BY
d.year, d.month, p.category;
Our Data Engineering Solutions
End-to-end data solutions that help you collect, process, store, and analyze your data effectively.
Modern Database Architecture
Design and implementation of scalable database systems that support high-throughput operations while maintaining data integrity and security.
- Polyglot persistence strategy
- Multi-region data replication
- Automated backup and recovery
- Performance optimization
- High availability configuration
apiVersion: databases.spotahome.com/v1
kind: RedisFailover
metadata:
name: analytics-cache
namespace: data
spec:
redis:
replicas: 3
resources:
requests:
cpu: 100m
memory: 512Mi
limits:
cpu: 500m
memory: 1Gi
storage:
persistentVolumeClaim:
metadata:
name: redis-data
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Gi
sentinel:
replicas: 3
resources:
requests:
cpu: 100m
memory: 256Mi
limits:
cpu: 300m
memory: 500Mi
---
apiVersion: acid.zalan.do/v1
kind: postgresql
metadata:
name: analytics-postgres
namespace: data
spec:
teamId: "data-engineering"
volume:
size: 100Gi
numberOfInstances: 3
users:
app_user: []
reporting_user:
- READONLY
databases:
analytics_db: app_user
postgresql:
version: "14"
parameters:
shared_buffers: "1GB"
max_connections: "200"
work_mem: "16MB"
Automated Data Pipelines
End-to-end ETL/ELT pipelines that reliably extract, transform, and load data at scale for analytics and machine learning applications.
- Real-time and batch processing
- Data quality validation
- Incremental loading patterns
- Metadata management
- Error handling and alerting
from datetime import datetime, timedelta
from airflow import DAG
from airflow.operators.python import PythonOperator
from airflow.providers.postgres.operators.postgres import PostgresOperator
from airflow.providers.amazon.aws.transfers.s3_to_redshift import S3ToRedshiftOperator
default_args = {
'owner': 'data-engineering',
'depends_on_past': False,
'email_on_failure': True,
'email': ['data-alerts@example.com'],
'retries': 2,
'retry_delay': timedelta(minutes=5)
}
with DAG(
'sales_data_etl',
default_args=default_args,
description='ETL pipeline for sales data',
schedule_interval='0 2 * * *',
start_date=datetime(2023, 1, 1),
catchup=False,
tags=['sales', 'production']
) as dag:
validate_source_data = PythonOperator(
task_id='validate_source_data',
python_callable=validate_data_quality,
op_kwargs={'schema': 'sales', 'table': 'transactions'}
)
extract_and_transform = PostgresOperator(
task_id='extract_and_transform',
postgres_conn_id='postgres_oltp',
sql='''
SELECT
date_trunc('day', created_at) as sale_date,
product_id,
customer_id,
region_id,
SUM(quantity) as units_sold,
SUM(price * quantity) as revenue
FROM
sales.transactions
WHERE
created_at >= '{{ ds }}' AND created_at < '{{ tomorrow_ds }}'
GROUP BY
date_trunc('day', created_at),
product_id,
customer_id,
region_id;
''',
autocommit=True
)
load_to_warehouse = S3ToRedshiftOperator(
task_id='load_to_warehouse',
schema='analytics',
table='daily_sales',
s3_bucket='data-warehouse-landing',
s3_key='sales/{{ ds }}/daily_extract.csv',
redshift_conn_id='redshift_warehouse',
copy_options=['CSV', 'IGNOREHEADER 1']
)
validate_source_data >> extract_and_transform >> load_to_warehouse
Modern Data Warehousing
High-performance analytical data stores designed for complex queries and business intelligence, providing a unified view of your organization's data.
- Star and snowflake schema design
- Columnar storage optimization
- Query performance tuning
- Data partitioning strategies
- Materialized view management
-- Dimension table for products
CREATE TABLE dim_product (
product_id INTEGER PRIMARY KEY,
product_name VARCHAR(255) NOT NULL,
category VARCHAR(100) NOT NULL,
subcategory VARCHAR(100) NOT NULL,
brand VARCHAR(100) NOT NULL,
unit_cost DECIMAL(10,2) NOT NULL,
unit_price DECIMAL(10,2) NOT NULL,
effective_date DATE NOT NULL,
expiration_date DATE,
is_current BOOLEAN NOT NULL
)
DISTKEY(product_id)
SORTKEY(is_current, effective_date);
-- Dimension table for customers
CREATE TABLE dim_customer (
customer_id INTEGER PRIMARY KEY,
customer_name VARCHAR(255) NOT NULL,
email VARCHAR(255),
segment VARCHAR(50) NOT NULL,
country VARCHAR(50) NOT NULL,
region VARCHAR(50) NOT NULL,
city VARCHAR(100) NOT NULL,
postal_code VARCHAR(20),
effective_date DATE NOT NULL,
expiration_date DATE,
is_current BOOLEAN NOT NULL
)
DISTKEY(customer_id)
SORTKEY(is_current, effective_date);
-- Dimension table for dates
CREATE TABLE dim_date (
date_id DATE PRIMARY KEY,
day INTEGER NOT NULL,
month INTEGER NOT NULL,
year INTEGER NOT NULL,
quarter INTEGER NOT NULL,
day_of_week INTEGER NOT NULL,
day_name VARCHAR(10) NOT NULL,
month_name VARCHAR(10) NOT NULL,
is_weekend BOOLEAN NOT NULL,
is_holiday BOOLEAN NOT NULL,
fiscal_year INTEGER NOT NULL,
fiscal_quarter INTEGER NOT NULL
)
SORTKEY(date_id);
-- Fact table for sales
CREATE TABLE fact_sales (
sale_id BIGINT IDENTITY(1,1) PRIMARY KEY,
date_id DATE NOT NULL REFERENCES dim_date(date_id),
product_id INTEGER NOT NULL REFERENCES dim_product(product_id),
customer_id INTEGER NOT NULL REFERENCES dim_customer(customer_id),
quantity INTEGER NOT NULL,
unit_price DECIMAL(10,2) NOT NULL,
discount_pct DECIMAL(5,2) NOT NULL,
sales_amount DECIMAL(12,2) NOT NULL,
profit_amount DECIMAL(12,2) NOT NULL
)
DISTKEY(customer_id)
SORTKEY(date_id);
-- Create a materialized view for common reporting needs
CREATE MATERIALIZED VIEW mv_monthly_sales_by_category AS
SELECT
d.year,
d.month,
d.month_name,
p.category,
COUNT(DISTINCT f.customer_id) AS unique_customers,
SUM(f.quantity) AS total_units,
SUM(f.sales_amount) AS total_sales,
SUM(f.profit_amount) AS total_profit
FROM
fact_sales f
JOIN dim_date d ON f.date_id = d.date_id
JOIN dim_product p ON f.product_id = p.product_id
WHERE
p.is_current = true
GROUP BY
d.year, d.month, d.month_name, p.category;
Analytics & Business Intelligence
End-to-end business intelligence solutions that transform raw data into actionable insights through intuitive dashboards and visualizations.
- Interactive dashboard development
- Embedded analytics
- Automated reporting
- Natural language querying
- Predictive analytics integration
version: 2
models:
- name: sales_metrics
description: "Core metrics for the sales department"
columns:
- name: date
description: "Date of sales activity"
tests:
- not_null
- name: product_id
description: "Product identifier"
tests:
- not_null
- relationships:
to: ref('dim_products')
field: product_id
- name: revenue
description: "Total revenue for the day and product"
tests:
- not_null
- positive_value
metrics:
- name: total_revenue
label: Total Revenue
model: ref('sales_metrics')
description: "Total revenue across all products"
type: sum
sql: revenue
timestamp: date
time_grains: [day, week, month, quarter, year]
dimensions:
- product_category
- region
- customer_segment
filters:
- field: status
operator: '='
value: "'completed'"
meta:
format: "$###,###,###"
- name: average_order_value
label: Average Order Value
model: ref('orders')
description: "Average value of orders"
type: average
sql: order_total
timestamp: ordered_at
time_grains: [day, week, month, quarter, year]
dimensions:
- customer_segment
- region
- acquisition_source
meta:
format: "$###,###.00"
Data Engineering Benefits
Our data solutions deliver tangible business value through efficient data management and powerful analytics capabilities.
Enhanced Data Availability
Design high-availability architectures that ensure your critical data is accessible when needed with minimal downtime.
Optimized Performance
Fine-tune your databases and data pipelines for maximum throughput, minimal latency, and efficient resource utilization.
Data Governance & Compliance
Implement robust data governance frameworks ensuring data quality, security, and regulatory compliance across the organization.
Scalable Data Infrastructure
Build data platforms that scale elastically with your business growth, from gigabytes to petabytes without architectural redesign.
Real-time Analytics
Enable real-time insights from streaming data to power dashboards, alerts, and operational intelligence for immediate action.
Unified Data Access
Create a single source of truth across your organization with unified data platforms and seamless integration between systems.
Our Database & Data Engineering Technology Stack
We leverage industry-leading technologies to build robust, scalable database solutions and efficient data pipelines.
Database Technologies

PostgreSQL
Robust relational database with advanced features for enterprise applications

MongoDB
Flexible NoSQL database for modern, document-based data models

Snowflake
Cloud data platform for unified analytics and data warehousing

Apache Kafka
High-throughput distributed streaming platform for real-time data pipelines
Data Engineering Tools

Apache Spark
Unified analytics engine for large-scale data processing

Apache Airflow
Platform to programmatically author, schedule and monitor workflows
Data Warehousing
Solutions for structured data storage and business intelligence
ETL/ELT Pipelines
Custom data integration pipelines for seamless data movement
Frequently Asked Questions
Common questions about our database and data engineering services.
Case Studies
See how our data engineering expertise has solved real-world challenges across industries.

Financial Fraud Detection System
How we engineered a scalable data pipeline and analytics platform to process millions of transactions for fraud detection.
Read case studyReady to Transform Your Data Infrastructure?
Let's discuss how our data engineering expertise can help you build scalable, high-performance data solutions.